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3. Timeline: 

 

Analyses will begin once the manuscript is approved 



4. Rationale:  

 

Abnormal cardiac electrophysiology broadly impacts cardiovascular health; for instance, 

excessively short or long ventricular depolarization-repolarization sequences (QT interval 

duration outside 350ms to 440ms) meaningfully increase risk for arrhythmias and sudden cardiac 

death [1]. Recent efforts in genome-wide association studies (GWAS) have started unraveling 

the high heritability of QT-interval duration and other electrocardiographic (ECG) traits [2-20], 

and the identification of genetic factors modulating their normal variation has shed an important 

light on arrythmogenesis [21, 22]. Despite these promising results, much of the heritability in 

cardiac conduction remains unexplained.  

 

A number of genetic loci identified to date are implicated in more than one ECG trait; for 

instance, single nucleotide polymorphisms (SNPs) near SNC5A and SNC10A, which respectively 

encode the Nav1.5 and Nav1.8 sodium ion channels, have been repeatedly associated with QT [5, 

15, 16, 19, 23-26], PR [6, 8, 12] and QRS interval durations [6, 11, 27]. Further evidence for 

pleiotropy of ECG effects—where single genes influence multiple traits—is apparent across the 

GWAS literature (Table 1).  

 

Gene pleiotropy in ECG traits opens the door to the use of multivariate statistical methods jointly 

assessing associations of SNPs with multiple ECG features. These models leverage correlation 

structures between traits to increase statistical power, and constitute a promising and 

computationally feasible yet largely unexplored avenue to detect new sources of genetic 

variation in ECG traits [28, 29]. 

 

5. Main Hypothesis/Study Questions: 

 

We propose to assess multivariate relationships between imputed SNPs (1000 genome) and ECG 

variables measured on the resting, standard 12-lead electrocardiogram that in combination, 

exhaustively characterize an average heartbeat in the temporal domain (Figure 1): P-wave 

duration, PR segment duration, QRS-complex duration, ST segment duration, T-wave duration 

(including U-wave, when present), and TP segment duration. TP-segment duration, 

corresponding to the isoelectric span preceding atrial depolarization, will be calculated as the 

difference between RR duration and the sum of all other temporal measures. 



 

Figure 1. Decomposition of the ECG into interval variables for use in multivariate analyses.  

First, race-specific multivariate test statistics constituting global tests for the associations 

between each SNP and all ECG traits will be computed. Race-stratified and trans-ethnic results 

combined by meta-analysis will be presented, using our previously described approach [28].  

Where significant in the multivariate step, univariate analyses will be conducted to identify the 

ECG traits responsible for the multivariate signal.  

 

6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 

interest with specific reference to the time of their collection, summary of data analysis, 

and any anticipated methodologic limitations or challenges if present). 

 

Exclusion criteria 

Participants meeting any of the following criteria will be excluded from all analyses: current use 

of type I or III anti-arrhythmic drugs; paced rhythm; prevalent heart failure (defined by 

Gothenburg criteria), prevalent coronary heart disease; atrial fibrillation/flutter, ectopy, Wolf-

Parkinson-White pattern, second or third degree atrioventricular block, or bundle branch block. 

Covariates 

We will stratify by race and adjust analyses for age at baseline, sex, ARIC study site, and for 

population substructure using the first ten principal components from EIGENSTRAT [30].  

SNP criteria 

In addition to standard QC practices (e.g. excluding all SNPs with oevar_imp < 0.3), we will 

apply a race/ethnic-specific expected heterozygosity filter of 30 (expected heterozygosity =

 2 × minor allele frequency × (1 − minor allele frequency)  × oevar_imp × 𝑁).  

Multivariate association test-statistic 

We will use a general framework for association tests with multivariate traits that we recently 

developed [28]. The power of these multivariate models to detect association increases with the 

extent of the correlations between outcomes, making our approach particularly attractive for the 

evaluation of ECG traits. Compared with other multivariate methods, this general framework has 
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the advantages that it allows covariate adjustment, accommodates family data, and is 

computationally efficient. 

Briefly, these methods relate a vector of 𝐾 traits (in our case, ECG traits) to a set of covariates 

and a SNP 𝐺 within a generalized linear model. The score statistic 𝑈𝑘 for the null hypothesis that 

that there is no association between 𝐺 and the 𝑘𝑡ℎ trait can be computed. The score vector U is 

asymptotically 𝐾-variate normal with mean 0, and its covariance matrix 𝑉 can be calculated 

accordingly. 

From there, we test the global null hypothesis that the tested SNP is associated with none of the 

𝐾 traits. Most simply, the global test statistic can be calculated as the quadratic form = 𝑈𝑇𝑉−1𝑈 

, which follows a chi-square distribution with 𝐾 degrees of freedom.  

Two other tests statistics 𝑇 and 𝑇′ can be calculated, which have greater statistical power under 

the strong assumptions that the effects of the SNP on all 𝐾 traits will be similar; however, these 

can have substantially less power than the 𝑄 statistic in the absence of such similarity of effects, 

and we intend to use the 𝑄 statistic in our analyses of ARIC cohort data. 

Replication 

We are investigating numerous avenues for replication. For instance, we will seek to collaborate 

with other studies that measured ECG traits and have 1000 genome imputed data. We namely 

have established relationships with the HCHS/SOL and WHI CT studies, both of which are 

promising candidates. 
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Table 1. Genome-wide significant (10

-8
) loci associated with multiple cardiac conduction phenotypes. 

 

Chromosome 
Region 

Mapped gene PR 
Interval 

PR 
Segment 

P wave QRS 
Duration 

QT 
Interval 

RR References 

11q12.2 FADS2    1  1 [14, 24]  

12p12.1 KNOP1P1-RPL21P102 1 1     [8, 17]  

12q24.21 
TBX3-UBA52P7  1 1    [8, 14] 

TBX5  3   2  [10-13]  

13q22.1 KLF12     2 2 [11, 24] 

2p14 MEIS1  3 1    [8, 12, 14] 

2p22.1 LOC101929667  2    2 [5-7, 24]  

3p22.2 

SCN5A-SCN10A     1 1 [11, 24] 

SCN10A  6 1 1 3 1 [2, 6, 8-14, 24]  

SCN5A  3   3 3 [2, 8, 10-13, 15, 16, 24] 

4q21.23 ARHGAP24  3 1    [8, 10, 13, 14] 

6q22.31 
CEP85L     1 2 [2, 15, 24] 

SLC35F1 1     1 [17, 24] 

7q31.2 CAV1  4 1   1 [6, 8, 10, 13, 14, 24] 
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